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Exact solution of “hot dimer” adsorption in one-dimensional lattices
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An analytical solution for the kinetics of the “hot-dimer” adsorption in a one-dimensional lattice is re-
ported. Hot dimers are molecules that dissociate after deposition, and each of the remaining monomers
fly apart up to a maximum distance R from the original adsorption sites. The kinetics of this process is
strongly dependent on the flying distance R. We find a particular behavior of the jamming coverage as a
function of R. Monte Carlo simulation results are in agreement with such a calculation.

PACS number(s): 68.10.Jy, 82.65.—1, 02.50.—r

Based upon scanning tunneling microscopy observa-
tions, Brune et al. [1] have demonstrated that oxygen
molecules chemisorb dissociatively on the Al(111) surface
and that at least part of their excess energy is taken up in
degrees of freedom parallel to the surface, giving rise to
translational motion during which this energy is dissipat-
ed. Evidence is given in order to show that this species
(monomers) flies apart a certain distance before becoming
frozen and adsorbed. This process, in which prior to
adhesion the arriving diatomic molecules break up into
single-atom fragments that are flying a certain fixed dis-
tance, is the so-called “hot-dimer” adsorption (HDA).
The analysis of the kinetics of such a process is an in-
teresting problem in itself, and Monte Carlo simulation
studies [2,3] have been introduced in order to analyze this
problem, in the framework of the one-dimensional (1D)
and two-dimensional (2D) random sequential adsorption.
Recently a simplified one-dimensional model of the
‘“HDA” has been solved by Privman [4].

Due to the vivid interest in this new kind of random
sequential adsorption problem, it is instructive to obtain
the one-dimensional analytical solution of the HDA
kinetics in the general case. In this work, we present an
analytical solution for this process in 1D lattices.

The adsorption of hot dimers is determined by two
well-defined steps: (a) the dimers adsorb in at least two
empty sites and (b) after each successful deposition at-
tempt, the dimers break up into two monomers that fly
up to a certain fixed distance R (in the following this
flight distance is used in units of lattice constant). If dur-
ing the flight one monomer hits another adparticle or
cluster of particles which is already at rest, the flying
monomer is frozen in at the collision point. The last
point is very important in the kinetics process because, at
early times, the initial configurations are strongly corre-
lated and determine the temporal evolution of the system.

We consider one-dimensional lattices with N adsorp-
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tive sites; we disregard any end effect (N — o). Each
successful deposition attempt is followed by ‘“‘instantane-
ous” fragmentation and the monomers fly apart up to a
flying distance R, and empty gaps of at most exactly 2R
sites are created in this process. Of course, the creation
of such gaps means the destruction of bigger empty gaps
and perhaps the creation of other gaps, so then we can
use the standard random sequential adsorption [5-11]
methodology. It is convenient to define the probabilities
P, () to find, at time ¢, gaps of exactly m empty sites.
The infinity hierarchy of rate equations that we obtain for
P, (1) contains terms that account for the creation and
the destruction of those gaps.

In order to solve this equation we used, as initial condi-
tions [4,8],

P, (0)=063%", (1)

where m =1,2,3,..., a=1—06,, and O, is the initial
density of monomers that, of course, is a random
configuration. The deposition attempts are random, with
the rate w per site, and will be conveniently adsorbed in
the definition of the dimensionless time variable 7=uwt.
The dimers are adsorbed only if there are at least two
empty sites; other attempts are rejected, as in the Monte
Carlo experiment. The coverage fraction is

o(rn=1—S mP, (1) . @

m=1

Since the fragments of the dissociation are instantane-
ously transported up to a maximum distance R, the time
evolution of the gap probabilities P;(7) satisfies the fol-
lowing rate equations.

ForR >1,
P op+ S P &)
=2l I -
dr I=R+3
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ForR >j>1, For j > 2R,
dp; . . z dP; =
7. - UTDR+(G+DP,+2 3 Py 4) —L=—@G-nP+2 3 P (8)
T I=R+2+j dr 1=R+2+j
For j=R, .
dpP 2R +1 This set of coupled linear equations can be solved in
faaiall A —(j=1DP;+(+DP;,,+2 3 P closed form. First. we so!ve Eq. (8) by standard methods,
dr I=R+3 and the result for j >2R is
+4 ¥ P . (5) , _
I=2R +2 Pj(7)=an('r)f_1GR(a,’r) ) 9
For 2R >j >R,
dP. R+1+4j where X (7)=exp(—7) and
d—’=—(j—1)Pj+(2R +1=j)P;,,+2 3 P
T 1=j+3 R+lal[1_X(T)I]
w Grla,7)=[1—aX(7)]%exp |[—2 3 —
+4 > P 6) =i
I=R+2+j
For j =2R, (10)
dP; R . . s i -
—L=—(—1DP;+ 3 IPg 414 Using Eq. (10), and with the initial conditions (1), it is
dr I=1 possible to solve [12] Egs. (3)-(7). Here we only present
w the expression for the coverage Oy (7) that we obtain us-
+ 3 (U—2R+1)P . N ing Eq. (2) as
I=3R+2
J
2R 2R +1y2R _ 2R +2y2R +1
Ox(n=1— | 3 mp,(n+ 2R Ve X7 "2Ra™ X~ ¢ (or)|. (11
ot (1—aX)

Note that for the derivation of this result the evaluation
of P,,(7) with 1 <m =2R is necessary; such functions are
obtained by quadrature.

The main aspect of Eq. (11) is the R dependence of the
coverage Oy (7). In our model the kinetics of the process
is determined by the early deposition; as a consequence
[12], the initial configurations are far from a random
configuration of monomers. For this reason we neglect
the initial random configurations taking the limit ©,—0
in the calculations of ©(7) and P,,(7) for all m.

Figure 1 shows the result for the coverage ©x(7) for
R =1,2,3,4. The analytical and the corresponding Monte
Carlo simulation results agree for the complete time re-
gime.

In Table I we show the jamming coverage Oz () ob-
tained for our model and Monte Carlo calculations.
Simulations are performed on 1D lattices of size L =107,
and averages are taken over 10° different samples. De-
tails of this simulation have been given in Ref. [2]. The
jamming coverage for R-—>c and for 6,—0 is

TABLE I. Jamming coverage vs flying distance R.
R 1 2 3 4

eR(w)

0.873 46
0.873 44

0.93274
0.93277

0.87923
0.879 40

0.92373
0.923 80

Analytical
Monte Carlo

[

O, (o )=1, as we have shown [2] and as corroborated by
Privman [4]. However, an interesting feature of this
model is the oscillation of the jamming coverage depend-
ing on the flying distance R (see Fig. 1). It is observed
that this effect is quite strong in one dimension, becoming
negligible for R > 10. In two dimensions it is cbserved [3]
only for R <3. The explanation of this effect takes into
account the temporal evolution of the P, (7). Mainly, for
odd values of R, we have always a bigger probability of a
singlet (empty gap of size unity) than for even values.

0.95

At =+
P R AR AT

09 -

0.85

08 | &

8p(r)

R

o

O R
a

075 F /
®

0.7

0.65

FIG. 1. Average coverage Oy (7) vs 7 for R =1,2,3,4, show-
ing the analytical result (lines) and Monte Carlo simulation
(points).
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FIG. 2. Monte Carlo simulations for the approach of the 0‘%%7540 10-3.0 10-30 10-5-»0 10—‘1-0 10%°
average coverage O (7) to the jamming coverage ©y( ) for 0
o

different values of R; in detail in the inset we show the short-
time regime and the analytical calculation (line) for the case
R=1.

Details of this analysis are given in Ref. [12].

In Fig. 2 we show the approach of the coverage O (7)
to the jamming coverage O (), for different values of
R, obtained by Monte Carlo simulations (in the inset one
can see the short-time behavior and the corresponding
analytical calculation). Here it is possible to observe that
for R <10, the short-time regime is different; however,
the kinetics of the process (in all cases) is determined by
two mechanisms, at short time the large gaps are de-
stroyed for the flying of the monomers and consequently
small gaps are created. This process has a characteristic
time 7; (7;=2) (see Fig. 2). Of course, at very large times
the kinetics depend on whether or not deposition of the
dimers occurs in a very small empty gap (m =2,3), and
the characteristic relaxation time 7y corresponds mostly
to the classic problem [7]. In between we can see a cross-
over region from the short- to the large-time regime.
Such crossover starts when the probability P,(7) has a
maximum, this maximum is shifted when R is increased,
and ends when the gaps with m >2 are consumed by the
process.

Finally, we show the effect of the initial configuration
on the jamming coverage, see Fig. 3. As we can see,
Or () is sensitive to the initial configuration. This

FIG. 3. Dependence of the jamming coverage © () on the
initial concentration of monomers 6.

effect is mainly due to the strong correlation introduced
by the early deposition, but is almost irrelevant for
©,<0.01.

In summary, in this Rapid Communication we present
the kinetic equations of the one-dimensional hot-dimer
adsorption model and the analytical solution for the cov-
erage O, (7). Our model takes into account the complete
evolution of the gaps, and as a consequence, the temporal
behavior of this process is described by the solution of the
rate equations. We show that the oscillations in the jam-
ming coverage depend on the odd or even value of R.
Two regimes of time are observed, as their origin is dis-
cussed. The analytical solution of our model is in good
agreement with Monte Carlo results. We also show the
effect of the initial condition on the jamming coverage.
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